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In this paper some high-performance mixed integer non-linear programming (MINLP) 
solvers in GAMS (General Algebraic Modeling System) are evaluated. AlphaECP, 
Baron, Dicopt and SBB are the MINLP (mixed integer non-linear programming) solvers 
in focus. A large test set with 250 problems is used and special attention is given to a 
new GAMS solver, GAMS/AlphaECP, which has recently been included in GAMS. 
The results show that each solver improves the overall performance of the GAMS 
system. Furthermore the results reveal that the combined performance of some pairs of 
solvers is significantly better than other pairs.  
 
1. Introduction  
The selection of a flexible modeling system as well as the selection of suitable solvers 
by which a generated model can be solved is often a critical issue in obtaining valuable 
results in modeling applications. For mathematical programming application the GAMS 
(General Algebraic Modeling System) (Brooke, 1992) is a frequently used high-level 
modeling system with several features tailored for solving complex models. The 
language allows the user to build large maintainable models and the system is especially 
designed for modeling of linear, nonlinear and mixed integer optimization problems. 
Other frequently used modeling languages for similar types of applications are, for 
example, AMPL (Fourer, 2002) and LINDO (Schrage, 1997). 
GAMS includes several optional solvers with different performance and characteristics. 
In the present paper three high-performance MINLP solvers in the GAMS software, 
SBB, Dicopt and Baron are tested on a large set of different mathematical programming 
problems together with a new GAMS MINLP-solver implementation. The latter 
MINLP-solver, GAMS/AlphaECP, in this paper called AlphaECP, is a new solver in 
GAMS. The purpose of the test runs is to compare the performance of the new solver 
with the already available and frequently used GAMS MINLP-solvers. 
 
2. Setup 
MINLP World (http://www.gamsworld.org/minlp/) offers a MINLP problem library, 
MINLPLib, with currently 250 models from small scale literature models to large scale 
real world models. The models are from areas like Agricultural Economics, Chemical-, 
Civil-, and Electrical Engineering, Finance, Management and Operations Research 



(Bussieck et al., 2003). The MINLPLib library has earlier been used to compare the 
performance of, for example, Dicopt and SBB (Bussieck and Drud, 2001), but at that 
time it contained only 139 problems. The MINLP problem library, now containing 250 
problems, is used in the present paper to test the performance of the aforementioned 
solvers. The test problems were executed with GAMS version 22.3 on a 3,2 GHz 
Pentium 4 PC with 1 GB memory. The default settings for each solver were used and 
the maximum allowed CPU time for each problem was 1000 seconds (~17 minutes). An 
additional test for AlphaECP was performed by increasing the time limit to 21600 
seconds (6 hours) to determine the specific performance of this solver. For AlphaECP, 
Dicopt and Baron the default MILP (mixed integer linear programming) solver for sub 
problems is GAMS/Cplex 10 from Ilog. For Baron, Dicopt and SBB the default NLP 
(non linear programming) solvers for sub problems were used. The default NLP solver 
for Dicopt as well as SBB is Conopt (Drud, 1992), but for Baron the default NLP solver 
is Minos (Murtagh et al., 2002). Optimality, indicated in the result section, is 
determined with a relative tolerance of 0.01% from the global optimal value. For 10 
problems in MINLPLib the global optimal value is not known and therefore the solution 
obtained, with the solvers, is reported only as feasible for these problems. 
 
3. Solvers 
AlphaECP is a C programming language implementation of the ECP (Extended Cutting 
Plane) method, presented in (Westerlund and Pörn, 2002). In AlphaECP only a 
sequence of MILP problems are solved. The intermediate MILP problems are solved to 
feasibility or optimality.  The nonlinear constraints are evaluated at every MILP 
solution and for a set of nonlinear constraints that are not satisfied at the solution point, 
linearizations are added to the MILP problem. Linearizations are added and MILP 
problems are solved until all constraints are satisfied. Note that no NLP problems need 
to be solved and that the number of function and gradient evaluations is therefore often 
several magnitudes less than in solvers based on solving NLP sub problems (Emet, 
2004). On the other hand the time usage when solving the MILP sub problems may be 
quite large (Emet, 2004) if the sub problems are solved to optimality and in some cases 
also when solving them only to feasibility. The method guarantees global optimum for 
pseudo-convex problems. In the test runs the default parameter settings are used. The 
default parameter settings guarantee global optimum for problems with convex 
objective function and pseudo-convex constraints.  
The performance of AlphaECP is compared with the GAMS solvers, Baron, Dicopt and 
SBB. The solver manuals for these solvers can be found from 
http://www.gams.com/solvers/. Baron (Branch And Reduce Optimization Navigator) 
combines constraint propagation, interval analysis, and duality in its reduce arsenal with 
enhanced branch and bound concepts in its search for globally optimal solutions (Ryoo 
and Sahinidis, 1995) and (Nikolaos and Sahinidis, 2000). Dicopt (DIscrete and 
Continuous OPTimizer) is based on the outer approximation method and presented in 
(Viswanathan and Grossmann, 1990).  SBB combines a standard Branch and Bound 
(B&B) method (Dakin, 1965) with some of the NLP solvers in GAMS, for example, 
CONOPT, MINOS or SNOPT. 
 



4. Results and analysis  
All solvers show a very good individual performance and in addition it is remarkable 
that each solver contribute to an overall performance within the used time limit of 1000 
seconds. The relative performance between Dicopt and SBB was found to be similar to 
what was observed in an earlier comparison (Bussieck and Drud, 2001), where SBB 
performed slightly better. It was found that each solver was able to solve some problem 
to a better solution than all the other solvers. The combined effort of two solvers 
revealed that some solvers are better in some problems than other solvers. For 18 of the 
250 problems no solution was found, with any of the four compared solvers, within the 
time limit of 1000 seconds. In Figure 1 we can see the number of feasible solutions and 
how many of the feasible solutions were optimal, when the problems are solved solely 
by the indicated solver. We can also see the number of problems for which the solvers 
interupted at 1000 seconds and, thus, might still improve the result. In Figure 2 the 
performance of any combination of two solvers is illustrated. From the figure it can be 
found that any combination of two solvers gives a better performance than the best 
single solver in some respect (compare Figure 2 with Figure 1). Also the combination 
D&S which gives slightly fewer feasible solutions (175) than the best single solver 
(177), solves 123 problems to optimality while the best single solver solves only 115 
problems to optimality. Furthermore, it can be found that the overall performance can 
still be improved by using three and four solvers. Figure 3 reveals that each solver gives 
a unique contribution to the overall performance. We can see that AlphaECP found a 
solution to 13 problems when no other solver found any solution, and for 11 problems 
AlphaECP was the only solver that found an optimal solution for these problems. In  
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Figure 1. The solvers obtained 
the following amount of 
solutions. 
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Figure 2. The combined performance of solvers 
(A=AlphaECP, B=Baron, D=Dicopt, S=SBB). 
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Figure 3.  All solvers give a 
unique contribution.
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Figure 4.  Amount of problems solved to feasibility, 
by each solver in a combination, for all possible 
solver combinations. 
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Figure 5. Quality of the feasible solutions. 
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Figure 6. Model status for the problems 
that reached the time limit. 

 
Figure 4 the number of problems that were solved individually to feasibility with all the 
solvers in the specific combination (for example both of the solvers when using only 
two solvers in the combination) is given. From Figure 5 we can see the quality of the 
feasible solutions, illustrated by the solution tolerance, defined as the difference of 
obtained and optimal solution relative to the optimal solution. In connection to Figure 4 
and Figure 5 it was, in addition, found that the combination, AlphaECP and Baron, and 
the combination, Dicopt and SBB, found solutions to similar problems, when the other 
two solvers could not find a solution. AlphaECP and Baron found a solution to 34 
problems when Dicopt or SBB did not obtain any solution. Dicopt and SBB found a 
solution to 17 problems, when the two other solvers did not obtain any solution. 
Moreover, AlphaECP or Baron found a solution to 57 problems when the two other 
solvers did not. For other combinations this strong coupling could not be found which 
implies that AlphaECP and Baron are able to solve different types of problems than 
Dicopt and SBB. In Figure 6 we can see that the model status for those problems which 
the solvers where still working on when the time limit was reached. We can see that 
especially AlphaECP and Baron might find additional feasible or optimal solutions to 
some problems if more solution time is given to these solvers. In theory Baron will 
always find the global optimum if given sufficient time which practically means infinite 
time for some problem. In total there where 115 problems for which some solver where 
still working when the time limit was reached. For 63 of these problems only a single 
solver was working when the time limit was reached. Two solvers where working on 45  
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Figure 7.  Average solution time per 
problem in MINLPLib. 
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Figure 8. Average solution time per 
problem in MINLPLib that was solved by 
all compared solvers. 



of these problems and three solvers were working on 7 of these problems. When for 63 
problems only one solver would have needed more time it implies that different solvers 
had difficulties with different problems. In Figure 7 we can see the average solution 
time (calculated from the solution times for all the 250 problems) for each solver and 
also the average solution time for the problems, that were solved to feasibility and 
optimality with the solvers. Especially SBB can solve many of the problems very 
effectively. The efficiency of Dicopt and SBB is also true when comparing the time 
usage for the 89 problems, where all solvers found a solution. This is shown in Figure 8. 
On the other hand, several of the difficult problems that were solved to feasibility within 
1000 CPU seconds with AlphaECP or Baron, terminated with no solution for Dicopt 
and SBB already after a few CPU seconds. This explains to a certain extent the higher 
average CPU usage, about 2 minutes, of AlphaECP and Baron. 
 
4.1 Further testing of the performance of AlphaECP 
In a second test run the CPU time limit per problem was increased to 21600 seconds (6 
hours) for AlphaECP. In Figure 9 we can see that the performance of AlphaECP is 
slightly enhanced. The number of feasible solutions was increased by 1 and the number 
of optimal solutions was increased by 16.  
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Figure 9. AlphaECP obtained the 
following amount of solutions with two 
different solution time limits. 
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Figure 10. Comparison of feasible 
solution quality when using  two separate 
solution time limits for AlphaECP. 

 
The time limit was still reached for 44 of the problems. In Figure 10 we can see the 
quality of the feasible but nonoptimal solutions. 
 
5. Conclusions  
In these test runs we have seen that the new solver, AlphaECP, gives a considerable 
improvement to the GAMS system. From the test runs on the MINLPLib problems we 
found that the solvers SBB and Dicopt are in general faster to finish the optimization, 
but in many problems they did not find a solution when Baron or AlphaECP did. The 
most important observation made was that the different solvers were able to solve some 
problems, when no other solver obtained a solution within the specified time limit of 
1000 CPU seconds, and thus giving a unique contribution to a software package where 
different solvers are available.  
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